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Relaxation and Lyapunov time scales in a one-dimensional gravitating sheet system
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The relation between relaxation, the time scale of Lyapunov instabilities, and the Kolmogorov-Sinai time in
a one-dimensional gravitating sheet system is studied. Both the maximum Lyapunov exponent and the
Kolmogorov-Sinai entropy decrease as proportionaNfd”>. The time scales determined by these quantities
evidently differ from any type of relaxation time found in the previous investigations. The relaxation time to
quasiequilibria(microscopic relaxationis found to have the samé dependence as the inverse of the mini-
mum positive Lyapunov exponent. The relaxation time to the final thermal equilibrium differs from the inverse
of the Lyapunov exponents and the Kolmogorov-Sinai time.

PACS numbsgps): 05.45.Jn, 05.26:y, 05.70.Ln, 98.10tz

[. INTRODUCTION only in the microscopic dynamics, thus it is called the mi-
croscopic relaxation. The global shape of the one-body dis-
Relaxation is the most fundamental process in the evolutribution transforms in much longer time scale. For example,
tion of many-body systems. The classical statistical theory i® quasiequilibriun{the water-bag distribution, which has the
based on ergodic property, which is considered to be estattengest life time begins to transform at ¥ 10°Nt, in aver-
lished after relaxation. However, all systems do not alwaysage. TGK called this transformation the macroscopic relax-
show such an idealistic relaxation. A historical example isation, but later Tsuchiya, Gouda, and Konighil] have
the FPU (Fermi-Pasta-Ulam problem [1], which exhibits  shown that this transformation corresponds to the onset of
phase space trapping and does not relax to the equipartitidhe itinerant stage In this stage, the one-body distribution
for a very long time[2]. stays in a quasiequilibrium for some time and then changes
One-dimensional self-gravitating sheet systef@GS  to other quasiequilibrium. This transformation continues for-
have been known to show strange evolution for nearly thirtyever. Probability density of the life time of the quasiequilib-
years. Hoh[3-5] first asserted that OGS relaxes to the ther-ria has a power law distribution with a long time cutoff and
modynamical equilibrium(the isothermal distributionin a  the longest life time is~ 10*Nt.. Only by averaging over a
time scale of abouN?t., whereN is the number of sheets time longer than the longest life time of the quasiequilibria,
andt, is typical time for a sheet to cross the system. Laterthe one-body distribution becomes that of the thermal equi-
more precise numerical experiments have figured out that thigdbrium, which is defined as the maximum entropy state.
Hohl's result was not right, and then other possible explanaYawn and Miller[12,13 also showed that the ergodicity is
tions for the relaxation time have been presented in the eighestablished not in dNt,, but in several 1INt.. Therefore
ies. A Belgian groud6,7] claimed that the OGS relaxed in the time~ 10°Nt. is necessary for relaxation to the thermal
time shorter thaiNt., whereas a Texas groyp,9] showed equilibrium, and called thehermal relaxation time Al-
that the system showed long lived correlation and never rethough there are some attempts to clarify the mechanisms of
laxed even after B?t,. Tsuchiya, Gouda, and Konisfil0]  these relaxation§10,14,15,1], the reason why the system
(hereafter TGK suggested that this contradiction can be re-does not relax for such a long time is still unclear.
solved in view of two different types of relaxations: the- At the view of chaotic theory in dynamical systems, re-
croscopicand themacroscopiaelaxations. At the time scale laxation is understood as mixing in phase space, and its time
of Nt;, cumulative effect of the mean field fluctuation makesscale is given by the Kolmogorov-SindKS) time, 7s
the energies of the individual particles change noticeably=1/hys, wherehyg is the Kolmogorov-Sinai entropy. How-
Averaging over these fluctuations one realizes that energgver, it does not simply correspond to the relaxation of the
equipartition is indeed achieved, thus there gives the equiene-body distribution function, which is of interest in many-
partition of energies, thus there is a relaxation at this timebody systems. Recently, Dellago and Polfbl showed that
scale. By this relaxation, however, the system is led not tan a hard sphere gas, the KS time equals the mixing time of
the thermal equilibrium but only to a quasiequilibrium. The neighboring orbits in the phase space, whereas the relaxation
global shape of the one-body distribution remains differeniof the one-body distribution function corresponds to the col-
from that of the thermal equilibrium. This relaxation appearslision time between particles. Now, it is fruitful to study
relation between relaxation and some dynamical quantities,
such as the KS entropy and the Lyapunov exponents, in the
*Present address: Department of Earth and Space Science, GraddGS. Milanovicet al. [15] showed the Lyapunov spectrum
ate School of Science, Osaka University, Toyonaka 560-0043, Jeand the Kolmogorov-Sinai entropy in the OGS for<IN
pan. <24. However, since it is known that the chaotic behavior
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changes foN~ 30 for the OGJ17], it is considerably im- 1

8 nwmwn

portant to extend the analysis to the system larger than 09 16 mmmmm
~30. In this paper, we extend the number of sheetdlto o8l o
=256 and follow the evolution numerically up td 128 sveranm

0.7

~10°Nt., which is long enough for the thermal relaxation
[11].

In Sec. Il, we introduce our model and report some pa-<
rameters of the numerical simulations. The results are giver
in Sec. lll and Sec. IV is devoted to conclusions and discus-
sion.

II. NUMERICAL SIMULATIONS
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The OGS comprisesN identical plane-parallel mass N
VN

sheets, each of which has uniform mass density and infinite

in, say, they and z directions. They move only in the FIG. 1. Spectrum of the positive Lyapunov exponents for vari-
direction under their mutual gravity. When two of the sheetspysN. The index of the Lyapunov exponents is scaled to 0 to 1.0.
intersect, they pass through each other. The Hamiltonian ofpe vertical axis shows the Lyapunov exponents normalized by the
the system has the form value of the maximum Lyapunov exponent. The exponents are in-
N tegrated up to 1, for N<128, and 1.& 10"t for N=256. In all
m cases, residual fluctuations of the exponents are less than 1%.
H=2 3, vE+(2mGm) 3 [x;—xi, 1) P °
=1 i< o .
of the Lyapunov exponents, which is labeled in the order

wherem, v;, andx; are the masssurface density velocity,  from the maximum to the minimum. Thus all the positive
and position of theth sheet, respectively. Since the gravita- Lyapunov exponentsi €N) is scaled between 0 to 1 in the
tional field is uniform, the individual particles moves para- axis. The vertical axis shows the Lyapunov exponents nor-
bolically, until they intersect with the neighbors. Thus themalized by the maximum Lyapunov exponenis,. Mil-
evolution of the system can be followed by solving quadraticanovic et al. [15] stated that the shape of the spectrum ap-
equations. This property helps us to calculate long time evoproximately converges for largd. A closer look, however,
lution with a high accuracy. Since length and velodiiyus  shows bending of the spectrum, which is most clearly seen at
also energycan be scaled in the system, the number of thgN—i)/(N—1)~0.9. This bending seems to increase wth
sheetsN is the only free parameter. The crossing time isfor N=32. ThoughN=256 is not large enough, the figure
defined by suggests that the Lyapunov spectrum does not converge for
largerN.

te=(1/4mGM)(4E/M)*2, ) Figure 2 shows\ dependence of the maximum {), the
minimum positive Lyapunov exponenk(_,), and the KS
entropyhgs per the number of freedom, is proportional to
N~%5 for N=32. The similar dependence was already given
in Fig. 13 in Tsuchiyeet al.[18]. This figure, in fact, shows
difference of the maximum Lyapunov exponents in different

whereM =Nm andE is the total mass and total energy of the
system. In comparing systems with differéhtthe mass of a
sheet is proportional to i/ in this scaling. Detailed descrip-
tions of the evolution of the OGS can be found in our pre-
vious paper$18,10,11].

In order to investigate dynamical aspects of the system,
we calculated the Lyapunov spectrum. The basic humerical

algorithm follows Shimada and Nagashirh&9], and de- 0.1

tailed description of the procedure for the OGS can be found

in Refs.[18,15. We made numerical integration for<a\ - hyg/N o—/’“’\o\_.\.
<128 up to 16t., which is enough time for the system to

relax. In this integration time, convergence of the Lyapunov 0.01

exponents is better than 1%, and the results do not depend on

initial conditions. ForN =256 we stopped the simulation at

1.8x10't,, which is about ten times less than the relaxation

time. This is just a temporal data, but fluctuations of the 0.001
Lyapunov exponents at the end of simulations are less than

1%, and as we will see in the next section, all quantities are

just on the scaling law of the smallét.
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IIl. RESULTS N

Figure 1 shows the spectrum of the Lyapunov exponents, FiG. 2. Dependence of the KS entrofsolid line with the sym-
{)\i}, where their unit i,S lé . This figure is the same diagram bol .)’ the maximum Lyapunov exponeﬁong dashed curve with
as Fig. 6 in Milanovicet al. [15], but the range ofN is  the symbol0), and the minimum positive Lyapunov exponent
extended to & N<256. In the horizontal axid,is the index (dashed-dotted curve with the symha).
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- o . N\, and Fig. 3b) is for the minimum positive on&y_,. The
J \E direction of the Lyapunov vectors change in time, but the
. 05 characteristics of the instabilities are the same. The instabil-
ity corresponding to\; is associated to a few particles in a
Vet 1 2 .
\X'% \{ central small region in the phase space. Most of the particles
. -0.5 are not affected by the instability. On the other hand, the
instability corresponding ta.y_», has a global character; it
Y o makes all particles mix in the phase space. This is the very
2 1 0 1 2 2 1 0 1 2 effect of relaxation. These features are commonly seen for
X X different N. Similar localization of Lyapunov vectors were

FIG. 3. Lyapunov vectors fol=64. Filled circles indicate po- reported also in coupled map lattick5]. Hence this phe-
sitions of N sheets and the arrows give direction of the LyapunovNOmenon might be universal.
vector: (a) the Lyapunov vector fok ,, (b) that for \y_». The sameN dependence of the Y, , as the microscopic

relaxation time, and the direction of the Lyapunov vector,

quasiequilibria. The quasiequilibrium appears only in amay be suggesting that the microscopic relaxation time is
shorter time scale and those Lyapunov exponents convergietermined by the growing time of the weakest instability,
to temporal values. Whila; of the water-bag distributions Which is determined by the minimum positive Lyapunov ex-
decreases a®l~ Y4 that of the isothermal distributions, Ponent; in other words, this time is necessary for the phase
which represents the thermal equilibrium, decreases a$pace orbit to mix in the phase space in all the directions of
N~ 1/5 Decreasmg nature of the Lyapunov exponent may m.freedom In our WOkang model of the evolution of the OGS
dicate that the OGS approaches closer to an integrable sykl0,11, the phase space is divided by some barriers which
tem for largerN. It is very interesting that the power of ~keep the phase orbit inside for a long time. The microscopic
—1/5 is different from that observed in some other systemgelaxation is considered to be a diffusion process in the bar-
[20,21], which is —1/3. In those systems the power can befiered region[10,14, and in the time~Nt;, restricted er-
exp|ained by means of a random mat[rBQ] approximation, godicity is established within the barriered region. This time
where it is unclear if such approach would be valid also formay correspond to the diffusion time in the slowest direc-
the OGS. tion.

As expected from the spectrum the KS entropy divided by
N is also proportional tN %5, thushygcN*®. It is different
from cases of extensive systems, where the KS entropy com-

monly increases linearly with [23]. This might be because  |n the ergodic theory, the KS time represents the time
our system is fully coupled and not extensive. Our result isscale of “mixing” in the phase space. On the other hand, the
also different from the conjecture by Benetéihal.[24] that  relaxation of the one-body distribution is of the most interest
hks increases linearly witlN. It is clear that the inverses of in systems with large degrees of freedom. We have shown
both the maximum Lyapunov exponents and the KS entropyhat the time scale of the relaxation of one-body distribution
do not give the time scale of any type of relaxation time. The(both the microscopic and thermal relaxatids certainly
same dependence for the KS entropy is reported in Latorajifferent from that of the KS time, and found that the grow-
Rapisarda, and Ruff¢25] for a system of fully coupled ing time of the weakest Lyapunov instability is about the
Hamiltonian rotators with attractive interaction, though theysame as the microscopic relaxation time. In addition, taking
stated that a more refined numerical analysis is needed f@ato account the direction of the eigenvector of the weakest
confirm these results. Lyapunov exponent, it is suggested that the microscopic re-
The N dependence of small positive Lyapunov exponentgaxation is determined by the weakest Lyapunov instability.
are quite different from larger ones. In Fig. 2, the minimum  The KS entropy is defined as inverse of a typical time for
positive Lyapunov exponeniy_,, is shown by a dashed the system to increase “information.” This definition does
dotted line with the symbol\. It decreases linearly foN  not depend on the number of degrees of freedom. In higher
=32, and its time scale A(_, is about the same as the dimensions, however, even very small growth of instability
microscopic relaxation time~Nt.). It is worth noting that can increase information quite rapidly. Therefore the KS
if the Lyapunov spectrum converges then thg_, would  time does not seem suitable to characterize the relaxation of
decrease abl~®® whereas the result does not. This differ- the one-body distribution function.
ence is an evidence that the shape of the Lyapunov spectrum The relaxation of the one-body distribution function im-
has not yet converged. plies that the system becomes ergodic, and the mechanism to
The Lyapunov vectors also give useful information aboutattain ergodicity is diffusion and mixing of the phase space
instabilities associated with the Lyapunov exponents. Therbits. The diffusion time is expected to be represented by
Lyapunov vector fork; is a unit vector in the phase space, time scale of orbital instability, i.e., the Lyapunov time. For
and the instability grows with theth fastest rate in that di- systems with many degrees of freedom, there should be dif-
rection. Figure 3 shows projection of the Lyapunov vectorference in diffusion time for different direction in the phase
for N=64 on to the one-body phase space. Filled circlespace, so that time of accomplishment of ergodicity might be
indicate positions oN sheets at a moment and the arrowsdetermined by the time of the slowest diffusion. Therefore
give the direction of the Lyapunov vector at that time. Thewe surmise that inverse of the smallest Lyapunov exponent
length of the vectors are scaled so as to see the directiomrpresents the relaxation time.
clearly. Figure 8a) is for the maximum Lyapunov exponent  In OGS, we presumed that the phase space is separated

IV. CONCLUSIONS AND DISCUSSION
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into small regions, which correspond to quasiequilibria, and Existence of the long-lived quasiequilibria is reported in
each region has approximate ergodidifyo]. The diffusion  various systems, such as one-dimensional systems with at-
time in the regions is the microscopic relaxation time. Bytractive pair potentialx; —x;|*, wherew is a positive param-
integrating long time evolution, the averaged diffusion timeeter[15], globally coupled spin model28,20, and a two-
in the regions is supposed to correspona o ». dimensional system with long-range forcg9]. Therefore

A remaining problem is why the KS time and any of the the slow relaxation seems universal property in systems with
Lyapunov times do not give the much long time scale of thgong-range forces. It is important to clarify the mechanism of
thermal relaxation in the OGS. In our working model, thethe slow relaxation to construct a new statistical mechanics

thermal relaxation is the successive transitions of the phasg the many-body systems with long-range forces.
space orbit among the barriered regions, which corresponds

to the quasiequilibria. Actual time of the thermal relaxation

is the maximum time of transition among qqa5|eqU|I|br|a. ACKNOWLEDGMENTS
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