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Relaxation and Lyapunov time scales in a one-dimensional gravitating sheet system
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The relation between relaxation, the time scale of Lyapunov instabilities, and the Kolmogorov-Sinai time in
a one-dimensional gravitating sheet system is studied. Both the maximum Lyapunov exponent and the
Kolmogorov-Sinai entropy decrease as proportional toN21/5. The time scales determined by these quantities
evidently differ from any type of relaxation time found in the previous investigations. The relaxation time to
quasiequilibria~microscopic relaxation! is found to have the sameN dependence as the inverse of the mini-
mum positive Lyapunov exponent. The relaxation time to the final thermal equilibrium differs from the inverse
of the Lyapunov exponents and the Kolmogorov-Sinai time.

PACS number~s!: 05.45.Jn, 05.20.2y, 05.70.Ln, 98.10.1z
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I. INTRODUCTION

Relaxation is the most fundamental process in the ev
tion of many-body systems. The classical statistical theor
based on ergodic property, which is considered to be es
lished after relaxation. However, all systems do not alw
show such an idealistic relaxation. A historical example
the FPU ~Fermi-Pasta-Ulam! problem @1#, which exhibits
phase space trapping and does not relax to the equipart
for a very long time@2#.

One-dimensional self-gravitating sheet systems~OGS!
have been known to show strange evolution for nearly th
years. Hohl@3–5# first asserted that OGS relaxes to the th
modynamical equilibrium~the isothermal distribution! in a
time scale of aboutN2tc , whereN is the number of sheet
and tc is typical time for a sheet to cross the system. La
more precise numerical experiments have figured out tha
Hohl’s result was not right, and then other possible expla
tions for the relaxation time have been presented in the ei
ies. A Belgian group@6,7# claimed that the OGS relaxed i
time shorter thanNtc , whereas a Texas group@8,9# showed
that the system showed long lived correlation and never
laxed even after 2N2tc . Tsuchiya, Gouda, and Konishi@10#
~hereafter TGK! suggested that this contradiction can be
solved in view of two different types of relaxations: themi-
croscopicand themacroscopicrelaxations. At the time scale
of Ntc , cumulative effect of the mean field fluctuation mak
the energies of the individual particles change noticea
Averaging over these fluctuations one realizes that ene
equipartition is indeed achieved, thus there gives the e
partition of energies, thus there is a relaxation at this ti
scale. By this relaxation, however, the system is led no
the thermal equilibrium but only to a quasiequilibrium. Th
global shape of the one-body distribution remains differ
from that of the thermal equilibrium. This relaxation appea
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only in the microscopic dynamics, thus it is called the m
croscopic relaxation. The global shape of the one-body
tribution transforms in much longer time scale. For examp
a quasiequilibrium~the water-bag distribution, which has th
longest life time! begins to transform at 43104Ntc in aver-
age. TGK called this transformation the macroscopic rel
ation, but later Tsuchiya, Gouda, and Konishi@11# have
shown that this transformation corresponds to the onse
the itinerant stage. In this stage, the one-body distributio
stays in a quasiequilibrium for some time and then chan
to other quasiequilibrium. This transformation continues f
ever. Probability density of the life time of the quasiequili
ria has a power law distribution with a long time cutoff an
the longest life time is;104Ntc . Only by averaging over a
time longer than the longest life time of the quasiequilibr
the one-body distribution becomes that of the thermal eq
librium, which is defined as the maximum entropy sta
Yawn and Miller @12,13# also showed that the ergodicity i
established not in 104Ntc , but in several 105Ntc . Therefore
the time;106Ntc is necessary for relaxation to the therm
equilibrium, and called thethermal relaxation time. Al-
though there are some attempts to clarify the mechanism
these relaxations@10,14,15,11#, the reason why the system
does not relax for such a long time is still unclear.

At the view of chaotic theory in dynamical systems, r
laxation is understood as mixing in phase space, and its t
scale is given by the Kolmogorov-Sinai~KS! time, tKS
51/hKS, wherehKS is the Kolmogorov-Sinai entropy. How
ever, it does not simply correspond to the relaxation of
one-body distribution function, which is of interest in man
body systems. Recently, Dellago and Posch@16# showed that
in a hard sphere gas, the KS time equals the mixing time
neighboring orbits in the phase space, whereas the relaxa
of the one-body distribution function corresponds to the c
lision time between particles. Now, it is fruitful to stud
relation between relaxation and some dynamical quantit
such as the KS entropy and the Lyapunov exponents, in
OGS. Milanovićet al. @15# showed the Lyapunov spectrum
and the Kolmogorov-Sinai entropy in the OGS for 10<N
<24. However, since it is known that the chaotic behav
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changes forN;30 for the OGS@17#, it is considerably im-
portant to extend the analysis to the system larger thaN
;30. In this paper, we extend the number of sheets toN
5256 and follow the evolution numerically up toT
;106Ntc , which is long enough for the thermal relaxatio
@11#.

In Sec. II, we introduce our model and report some
rameters of the numerical simulations. The results are gi
in Sec. III and Sec. IV is devoted to conclusions and disc
sion.

II. NUMERICAL SIMULATIONS

The OGS comprisesN identical plane-parallel mas
sheets, each of which has uniform mass density and infi
in, say, they and z directions. They move only in thex
direction under their mutual gravity. When two of the she
intersect, they pass through each other. The Hamiltonia
the system has the form

H5
m

2 (
i 51

N

v i
21~2pGm2!(

i , j
uxj2xi u, ~1!

wherem, v i , andxi are the mass~surface density!, velocity,
and position of thei th sheet, respectively. Since the gravit
tional field is uniform, the individual particles moves par
bolically, until they intersect with the neighbors. Thus t
evolution of the system can be followed by solving quadra
equations. This property helps us to calculate long time e
lution with a high accuracy. Since length and velocity~thus
also energy! can be scaled in the system, the number of
sheetsN is the only free parameter. The crossing time
defined by

tc5~1/4pGM!~4E/M !1/2, ~2!

whereM5Nm andE is the total mass and total energy of th
system. In comparing systems with differentN, the mass of a
sheet is proportional to 1/N in this scaling. Detailed descrip
tions of the evolution of the OGS can be found in our p
vious papers@18,10,11#.

In order to investigate dynamical aspects of the syst
we calculated the Lyapunov spectrum. The basic numer
algorithm follows Shimada and Nagashima@19#, and de-
tailed description of the procedure for the OGS can be fo
in Refs. @18,15#. We made numerical integration for 8<N
<128 up to 108tc , which is enough time for the system t
relax. In this integration time, convergence of the Lyapun
exponents is better than 1%, and the results do not depen
initial conditions. ForN5256 we stopped the simulation a
1.83107tc , which is about ten times less than the relaxat
time. This is just a temporal data, but fluctuations of t
Lyapunov exponents at the end of simulations are less
1%, and as we will see in the next section, all quantities
just on the scaling law of the smallerN.

III. RESULTS

Figure 1 shows the spectrum of the Lyapunov expone
$l i%, where their unit is 1/tc . This figure is the same diagram
as Fig. 6 in Milanovic´ et al. @15#, but the range ofN is
extended to 8<N<256. In the horizontal axis,l is the index
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of the Lyapunov exponents, which is labeled in the ord
from the maximum to the minimum. Thus all the positiv
Lyapunov exponents (i<N) is scaled between 0 to 1 in th
axis. The vertical axis shows the Lyapunov exponents n
malized by the maximum Lyapunov exponents,l1. Mil-
anović et al. @15# stated that the shape of the spectrum a
proximately converges for largeN. A closer look, however,
shows bending of the spectrum, which is most clearly see
(N2 i )/(N21);0.9. This bending seems to increase withN
for N>32. ThoughN5256 is not large enough, the figur
suggests that the Lyapunov spectrum does not converge
largerN.

Figure 2 showsN dependence of the maximum (l1), the
minimum positive Lyapunov exponent (lN22), and the KS
entropyhKS per the number of freedom.l1 is proportional to
N21/5 for N>32. The similar dependence was already giv
in Fig. 13 in Tsuchiyaet al. @18#. This figure, in fact, shows
difference of the maximum Lyapunov exponents in differe

FIG. 1. Spectrum of the positive Lyapunov exponents for va
ousN. The index of the Lyapunov exponents is scaled to 0 to 1
The vertical axis shows the Lyapunov exponents normalized by
value of the maximum Lyapunov exponent. The exponents are
tegrated up to 108tc for N<128, and 1.83107tc for N5256. In all
cases, residual fluctuations of the exponents are less than 1%.

FIG. 2. Dependence of the KS entropy~solid line with the sym-
bol d), the maximum Lyapunov exponent~long dashed curve with
the symbolh), and the minimum positive Lyapunov expone
~dashed-dotted curve with the symboln).
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quasiequilibria. The quasiequilibrium appears only in
shorter time scale and those Lyapunov exponents conv
to temporal values. Whilel1 of the water-bag distributions
decreases asN21/4, that of the isothermal distributions
which represents the thermal equilibrium, decreases
N21/5. Decreasing nature of the Lyapunov exponent may
dicate that the OGS approaches closer to an integrable
tem for largerN. It is very interesting that the power of
21/5 is different from that observed in some other syste
@20,21#, which is 21/3. In those systems the power can
explained by means of a random matrix@22# approximation,
where it is unclear if such approach would be valid also
the OGS.

As expected from the spectrum the KS entropy divided
N is also proportional toN21/5, thushKS}N4/5. It is different
from cases of extensive systems, where the KS entropy c
monly increases linearly withN @23#. This might be because
our system is fully coupled and not extensive. Our resul
also different from the conjecture by Benettinet al. @24# that
hKS increases linearly withN. It is clear that the inverses o
both the maximum Lyapunov exponents and the KS entr
do not give the time scale of any type of relaxation time. T
same dependence for the KS entropy is reported in Lat
Rapisarda, and Ruffo@25# for a system of fully coupled
Hamiltonian rotators with attractive interaction, though th
stated that a more refined numerical analysis is neede
confirm these results.

The N dependence of small positive Lyapunov expone
are quite different from larger ones. In Fig. 2, the minimu
positive Lyapunov exponent,lN22, is shown by a dashed
dotted line with the symboln. It decreases linearly forN
>32, and its time scale 1/lN22 is about the same as th
microscopic relaxation time (;Ntc). It is worth noting that
if the Lyapunov spectrum converges then thelN22 would
decrease asN26/5, whereas the result does not. This diffe
ence is an evidence that the shape of the Lyapunov spec
has not yet converged.

The Lyapunov vectors also give useful information abo
instabilities associated with the Lyapunov exponents. T
Lyapunov vector forl i is a unit vector in the phase spac
and the instability grows with thei th fastest rate in that di
rection. Figure 3 shows projection of the Lyapunov vec
for N564 on to the one-body phase space. Filled circ
indicate positions ofN sheets at a moment and the arro
give the direction of the Lyapunov vector at that time. T
length of the vectors are scaled so as to see the direc
clearly. Figure 3~a! is for the maximum Lyapunov exponen

FIG. 3. Lyapunov vectors forN564. Filled circles indicate po-
sitions of N sheets and the arrows give direction of the Lyapun
vector: ~a! the Lyapunov vector forl1, ~b! that for lN22.
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l1 and Fig. 3~b! is for the minimum positive onelN22. The
direction of the Lyapunov vectors change in time, but t
characteristics of the instabilities are the same. The insta
ity corresponding tol1 is associated to a few particles in
central small region in the phase space. Most of the parti
are not affected by the instability. On the other hand,
instability corresponding tolN22 has a global character; i
makes all particles mix in the phase space. This is the v
effect of relaxation. These features are commonly seen
different N. Similar localization of Lyapunov vectors wer
reported also in coupled map lattices@26#. Hence this phe-
nomenon might be universal.

The sameN dependence of the 1/lN22 as the microscopic
relaxation time, and the direction of the Lyapunov vect
may be suggesting that the microscopic relaxation time
determined by the growing time of the weakest instabili
which is determined by the minimum positive Lyapunov e
ponent; in other words, this time is necessary for the ph
space orbit to mix in the phase space in all the directions
freedom. In our working model of the evolution of the OG
@10,11#, the phase space is divided by some barriers wh
keep the phase orbit inside for a long time. The microsco
relaxation is considered to be a diffusion process in the b
riered region@10,14#, and in the time;Ntc , restricted er-
godicity is established within the barriered region. This tim
may correspond to the diffusion time in the slowest dire
tion.

IV. CONCLUSIONS AND DISCUSSION

In the ergodic theory, the KS time represents the ti
scale of ‘‘mixing’’ in the phase space. On the other hand,
relaxation of the one-body distribution is of the most inter
in systems with large degrees of freedom. We have sho
that the time scale of the relaxation of one-body distribut
~both the microscopic and thermal relaxation! is certainly
different from that of the KS time, and found that the grow
ing time of the weakest Lyapunov instability is about t
same as the microscopic relaxation time. In addition, tak
into account the direction of the eigenvector of the weak
Lyapunov exponent, it is suggested that the microscopic
laxation is determined by the weakest Lyapunov instabili

The KS entropy is defined as inverse of a typical time
the system to increase ‘‘information.’’ This definition doe
not depend on the number of degrees of freedom. In hig
dimensions, however, even very small growth of instabil
can increase information quite rapidly. Therefore the K
time does not seem suitable to characterize the relaxatio
the one-body distribution function.

The relaxation of the one-body distribution function im
plies that the system becomes ergodic, and the mechanis
attain ergodicity is diffusion and mixing of the phase spa
orbits. The diffusion time is expected to be represented
time scale of orbital instability, i.e., the Lyapunov time. F
systems with many degrees of freedom, there should be
ference in diffusion time for different direction in the pha
space, so that time of accomplishment of ergodicity might
determined by the time of the slowest diffusion. Therefo
we surmise that inverse of the smallest Lyapunov expon
represents the relaxation time.

In OGS, we presumed that the phase space is sepa

v
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into small regions, which correspond to quasiequilibria, a
each region has approximate ergodicity@10#. The diffusion
time in the regions is the microscopic relaxation time.
integrating long time evolution, the averaged diffusion tim
in the regions is supposed to correspond tolN22.

A remaining problem is why the KS time and any of th
Lyapunov times do not give the much long time scale of
thermal relaxation in the OGS. In our working model, t
thermal relaxation is the successive transitions of the ph
space orbit among the barriered regions, which correspo
to the quasiequilibria. Actual time of the thermal relaxati
is the maximum time of transition among quasiequilibr
The fact that the Lyapunov exponents do not give the cor
time of thermalization indicates that the transition is due t
different mechanism from local instabilities. There are so
pieces of evidence that collective effects are responsible
keeping the system in a quasiequilibrium@11,27#. This may
suggest that we need a new dynamical quantity which c
acterizes the slow diffusion.
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Existence of the long-lived quasiequilibria is reported
various systems, such as one-dimensional systems with
tractive pair potentialuxi2xj un, wheren is a positive param-
eter @15#, globally coupled spin models@28,20#, and a two-
dimensional system with long-range forces@29#. Therefore
the slow relaxation seems universal property in systems w
long-range forces. It is important to clarify the mechanism
the slow relaxation to construct a new statistical mechan
of the many-body systems with long-range forces.
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